How do you solve 2\sin x = 3\cos ( x + 45^ { \circ } )2sinx=3cos(x+45)?

2 Answers
Jul 27, 2018

color(brown)(x = arctan (3 / (3 + 2 sqrt2) ) ~~ 27.2357^@x=arctan(33+22)27.2357

Explanation:

2 sin x = 3 cos (x + 45^@)2sinx=3cos(x+45)

color(crimson)("Using identity " cos (A + B) = cos A cos B - sin A sin B,Using identity cos(A+B)=cosAcosBsinAsinB,

2/3 sin x = cos x * cos 45 - sin x * sin 4523sinx=cosxcos45sinxsin45

2/3 sin x = cos x / sqrt 2 - sin x / sqrt223sinx=cosx2sinx2

((2 sqrt 2)/3) sin x = cos x - sin x(223)sinx=cosxsinx

cos x / sin x - (cancel sin x / cancel sin x )^color(red)(1)= (2 sqrt2) / 3

cot x = 1 + (2 sqrt2) / 3

tan x = 1 / (1 + ((2 sqrt2)/3))

tan x = 3 / (3 + 2 sqrt2)

x = arctan (3 / (3 + 2 sqrt2) )

color(brown)(x ~~ 27.2357^@

Jul 27, 2018

x = ( kpi + 0.47535)) rad = (180 k + 27.2357)^o,
k = 0, +-1, +-2, +-3, ...

Explanation:

= 2 sin x - 3 cos ( x + pi/4 )

= 2 sin x - 3 (cos x cos (pi/4) - sin x sin (pi/4) )

= ( ( 2 +3/sqrt2 )sin x - 3/sqrt2 cos x)

= a ( sin x sin alpha - cos x cos alpha )

= a sin ( x - alpha ),

where

a = sqrt(( 2 + 3/sqrt2 )^2 + ( 3/sqrt2)^2 )

= sqrt(13 +6sqrt2 ) = 4.63522, nearly.

cos alpha = ( 2 - 1/sqrt2 )/a and sin alpha = (3/sqrt2)/a. Now,

sin ( x - alpha ) = 0, and so,

x - alpha = kpi, k = 0, +-1, +-2, +-3,..., giving

x = kpi + alpha = (180 k + arcsin (0.45765))^o

= (180 k + 27.2357))^o = ( kpi + 0.47535)) rad.

GRAPH CHECK, 6-sd x = 0.474353 rad :
graph{y-2 sin x + 3 cos ( x + pi/4 ) = 0[0.47535.475356 -0.00001 0.00001]}{