How do you combine like terms in #(5- x ) ( 5+ x ) + ( x - 5) ^ { 2} + ( 2x - 10) ( x + 3)#?

2 Answers
Jul 27, 2018

#2x^2-14x+20#

Explanation:

#(5-x)(5+x)+(x-5)^2+(2x-10)(x+3)# can be separated into 3 parts:

  • #(5-x)(5+x)=25-x^2# (difference of 2 squares)

  • #(x-5)^2=x^2-10x+25# (perfect squares)

  • #(2x-10)(x+3)=2x^2-4x-30#

#(5-x)(5+x)+(x-5)^2+(2x-10)(x+3)#
#=25-x^2+x^2-10x+25+2x^2-4x-30#
#=25cancel(-x^2+x^2)-10x+25+2x^2-4x-30#
#=2x^2-14x+20#

Jul 27, 2018

#2x^2-14x+20#

Explanation:

#(5-x)(5+x)+(x-5)^2+(2x-10)(x+3)#

=#25-x^2+x^2-10x+25+2x^2-4x-30#

=#2x^2-14x+20#