If x+y=2pi/4, find maximum and minimum of sinx+siny?

When
x+y=(2pi)/4, x>=0, y>=0 :x+y=2π4,x0,y0:
the maximum and the minimum value of sinx+siny=?sinx+siny=?

2 Answers

Maximum =\sqrt2=2

Minimum =-\sqrt2=2

Explanation:

Given that

x+y={2\pi}/4x+y=2π4

x+y=\pi/2x+y=π2

y=\pi/2-xy=π2x

Now, setting y=\pi/2-xy=π2x in given function as follows

f(x, y)=\sin x+\sinyf(x,y)=sinx+siny

f(x)=\sin x+\sin(\pi/2-x)f(x)=sinx+sin(π2x)

f(x)=\sin x+\cosxf(x)=sinx+cosx

f'(x)=\cos x-\sin x

f''(x)=-sin x-cos x

For minima & maxima, f'(x)=0

\therefore \cos x-\sin x=0

\tan x=1

x=n\pi+\pi/4

\implies f''(\pi/4)= -\sin(\pi/4)-\cos(\pi/4)=-\sqrt2<0

hence, function is maximum at x=\pi/4 & the maximum value is given as

f(\pi/4)=\sin(\pi/4)+\cos(\pi/4)=\sqrt2

\implies f''({5\pi}/4)= -\sin({5\pi}/4)-\cos({5\pi}/4)=\sqrt2>0

hence, function is minimum at x={5\pi}/4 & the minimum value is given as

f({5\pi}/4)=\sin({5\pi}/4)+\cos({5\pi}/4)=-\sqrt2

Jul 27, 2018

x+y=(2pi)/4 implies y = pi/2 - x

:. sinx + siny = sinx + sin(pi/2 - x)

= sinx + cosx

= sqrt2( 1/sqrt2 sinx + 1/sqrt2 cosx)

= sqrt(2) sin(x + pi/4)

So, maximum and minimum of "sinx+siny":

  • sqrt2

  • - sqrt2