What is the frequency of f(theta)= sin 24 t - cos 42 t f(θ)=sin24tcos42t?

1 Answer
Jul 28, 2018

The frequency is f=3/pif=3π

Explanation:

The period TT of a periodic function f(x)f(x) is given by

f(x)=f(x+T)f(x)=f(x+T)

Here,

f(t)=sin24t-cos42tf(t)=sin24tcos42t

Therefore,

f(t+T)=sin24(t+T)-cos42(t+T)f(t+T)=sin24(t+T)cos42(t+T)

=sin(24t+24T)-cos(42t+42T)=sin(24t+24T)cos(42t+42T)

=sin24tcos24T+cos24tsin24T-cos42tcos42T+sin42tsin42T=sin24tcos24T+cos24tsin24Tcos42tcos42T+sin42tsin42T

Comparing,

f(t)=f(t+T)f(t)=f(t+T)

{(cos24T=1),(sin24T=0),(cos42T=1),(sin42T=0):}

<=>, {(24T=2pi),(42T=2pi):}

<=>, {(T=1/12pi=7/84pi),(T=4/84pi):}

The LCM of 7/84pi and 4/84pi is

=28/84pi=1/3pi

The period is T=1/3pi

The frequency is

f=1/T=1/(1/3pi)=3/pi

graph{sin(24x)-cos(42x) [-1.218, 2.199, -0.82, 0.889]}