How do you differentiate f(x)=(4+e^(sqrt(7x)))^3 using the chain rule.?

1 Answer

f'(x)=21/{2\sqrt{7x}}(4+e^{\sqrt{7x}})^2e^{\sqrt{7x}}

Explanation:

Given function:

f(x)=(4+e^{\sqrt{7x}})^3

differentiating above equation w.r.t. x using chain rule as folows

d/dxf(x)=d/dx(4+e^{\sqrt{7x}})^3

f'(x)=3(4+e^{\sqrt{7x}})^2d/dx(4+e^{\sqrt{7x}})

=3(4+e^{\sqrt{7x}})^2(0+e^{\sqrt{7x}}d/dx(\sqrt{7x}))

=3(4+e^{\sqrt{7x}})^2(e^{\sqrt{7x}}(1/{2\sqrt{7x}}d/dx(7x)))

=3(4+e^{\sqrt{7x}})^2({e^{\sqrt{7x}}}/{2\sqrt{7x}}(7)))

=21/{2\sqrt{7x}}(4+e^{\sqrt{7x}})^2e^{\sqrt{7x}}