What is int ln(2x)^2dxln(2x)2dx?

2 Answers

=2x\ln(2 x) -2x +C=2xln(2x)2x+C

Explanation:

Given that

\int ln(2x)^2 \ \d x

=\int 2ln(2x) \ \d x

=2\int (lnx+\ln 2) \ \d x

=2\int lnx\ dx+2\int \ln 2 \d x

=2(\ln x \int 1\ dx-\int (1/dx(lnx)\cdot \int1 \ dx) dx)+2\ln 2\int 1 \d x

=2(x\ln x -\int (1/x\cdot x) dx)+2\ln 2 \ (x)+C

=2(x\ln x -x)+2x\ln 2 +C

=2x\ln(2 x) -2x +C

Jul 28, 2018

The answer is =2xln2x-2x+C

Explanation:

A slightly different method

The integral is

I=intln(2x)^2dx=2intln2xdx

Perforn an integration by parts

intuv'dx=uv-intu'vdx

u=ln2x, =>, u'=1/2x*2=1/x

v'=1, =>, v=x

Therefore,

I=2xln2x-2int1/x*xdx

=2xln2x-2intdx

=2xln2x-2x+C