How do you find the exact value of the sin, cos, and tan of the angle -105 degrees?

1 Answer
Jul 30, 2018

Below

Explanation:

sin(-105)

=sin(-60-45)

=sin((-60)+(-45))

=sin(-60)cos(-45)+cos(-60)sin(-45)

=-sqrt3/2timessqrt2/2+1/2times-sqrt2/2

=-sqrt6/4-sqrt2/4

=(-sqrt6-sqrt2)/4


cos(-105)

=cos(-60-45)

=cos((-60)+(-45))

=cos(-60)cos(-45)-sin(-60)sin(-45)

=1/2timessqrt2/2-(-sqrt3/2times-sqrt2/2)

=sqrt2/4-sqrt6/4

=(sqrt2-sqrt6)/4


tan(-105)

=tan(-60-45)

=tan((-60)+(-45))

=(tan(-60)+tan(-45))/(1-tan(-60)tan(-45)

=(-sqrt3-1)/(1-(-sqrt3)(-1))

=(-sqrt3-1)/(1-sqrt3)

=(-(sqrt3+1))/(1-sqrt3)

=(sqrt3+1)/(sqrt3-1)