How do you find all the critical points to graph (x + 2)^2/4 - (y - 5)^2/25 = 1 (x+2)24(y5)225=1 including vertices, foci and asymptotes?

1 Answer
Jul 30, 2018

Please see the explanation below

Explanation:

The equation of a hyperbola with a horizontal transverse axis is

(x-h)^2/a^2-(y-k)^2/b^2=1(xh)2a2(yk)2b2=1

Our equation is

(x+2)^2/4-(y-5)^2/25=1(x+2)24(y5)225=1

a=2a=2

b=5b=5

h=-2h=2

k=5k=5

c=sqrt(b^2+c^2)=sqrt(25+4)=sqrt29c=b2+c2=25+4=29

The center is C=(h,k)=(-2,5)C=(h,k)=(2,5)

The vertices are A=(h+a,k)=(0,5)A=(h+a,k)=(0,5)

and

C'=(h-a,k)=(-4,5)

The foci are F=(h+c,k)=(-2+sqrt29, 5)

and

F'=(-2-sqrt29, 5)

The asymptotes are

(x+2)^2/4-(y-5)^2/25=0

(x+2)^2/4=(y-5)^2/25

(y-5)/5=+-(x+2)/2

graph{((x+2)^2/4-(y-5)^2/25-1)((y-5)/5-(x+2)/2)((y-5)/5+(x+2)/2)=0 [-12.25, 7.75, 0.2, 10.2]}