What is the equation of the tangent line of f(x)=(x-2)(x-2)(lnx-x)f(x)=(x2)(x2)(lnxx) at x=3x=3?

2 Answers
Jul 30, 2018

y=(-2/3+2(In3-3))x-5In3+17y=(23+2(In33))x5In3+17

Explanation:

f(x)=(x-2)(x-2)(Inx-x)f(x)=(x2)(x2)(Inxx)
f(x)=(x-2)^2(Inx-x)f(x)=(x2)2(Inxx)
f'(x)=(x-2)^2(1/x-1)+(Inx-x)times2(x-2)
f'(x)=(x-2)^2(1/x-1)+2(x-2)(Inx-x)

At x=3,
f'(3)=(3-2)^2(1/3-1)+2(3-2)(In3-3)
f'(3)=-2/3+2(In3-3)

Equation of the tangent at (3, In3-3)

y-(In3-3)=(-2/3+2(In3-3))(x-3)

y-In3+3=(-2/3+2(In3-3))x+2-6(In3-3)

y-In3+3=(-2/3+2(In3-3))+2-6In3+18

y-In3=(-2/3+2(In3-3))x-6In3+17

y=(-2/3+2(In3-3))x-5In3+17

Jul 30, 2018

Equation of tangent is y = -4.47 x +11.5

Explanation:

f(x)= (x-2)(x-2)(ln x- x) ; x=3 or

f(x)= (x-2)^2(ln x- x)

f(3)= (3-2)^2(ln 3- 3) ~~ -1.90 The point at which ,tangent

to be drawn is (3, -1.9)

f(x)= (x-2)^2(ln x- x)

f'(x)= (x-2)^2(1/x- 1) + 2(x-2)(ln x -x)

f'(3)= (3-2)^2(1/3- 1) + 2(3-2)(ln 3 -3)~~ -4.47

Slope of curve at (3, -1.9) is m=-4.47

Equation of tangent is y-y_1= m(x-x_1) , therefore

equation of tangent is y-(-1.9)= -4.47(x-3) or

y+1.9= -4.47 x +13.4 or y = -4.47 x +11.5 [Ans]