int((x(tanx)^-1)dx)/(1+x^2)^(3/2)∫(x(tanx)−1)dx(1+x2)32
Put x=tanzx=tanz
dx=sec^2zdx=sec2z
int (tanz.z.(sec^2z))/((sec^2z)^(3/2)).dz∫tanz.z.(sec2z)(sec2z)32.dz
int(tanz.z.dz)/secz.dz∫tanz.z.dzsecz.dz
int(sinz/cosz).cosz.z.dz∫(sinzcosz).cosz.z.dz
intsinz.z.dz∫sinz.z.dz
Now I'm gonna use integration by parts
intu.dv = u.v -intdu.v∫u.dv=u.v−∫du.v
u = z dz u=zdz
du = 1du=1
dv=sinzdv=sinz
v=-coszv=−cosz
Now put values in formula
intz.sinz.dz=z(-cosz)-int(-cosz)∫z.sinz.dz=z(−cosz)−∫(−cosz)
intz.sinz.dz=z(-cosz)+intcosz∫z.sinz.dz=z(−cosz)+∫cosz
intz.sinz.dz=z(-cosz)+sinz +C∫z.sinz.dz=z(−cosz)+sinz+C.......(1)
As we know cosz=1/seczcosz=1secz
secz=sqrt(1+tan^2z)secz=√1+tan2z
And is equal to tanz =xtanz=x above.
then, secz=sqrt(1+x^2)secz=√1+x2
cosz=1/sqrt(1+x^2)cosz=1√1+x2
sinz=sqrt(1-cos^2z)sinz=√1−cos2z
sinz=sqrt(1-1/(1+x^2))sinz=√1−11+x2
sinz=sqrt(x^2/(1+x^2))sinz=√x21+x2
sinz = x/sqrt(1+x^2)sinz=x√1+x2
Now put value of z, cosz, sinz in eq 1
Here is Final answerint((x(tanx)^-1)dx)/(1+x^2)^(3/2)=tan^-1x(-1/sqrt(1+x^2))+x/sqrt(1+x^2) +C∫(x(tanx)−1)dx(1+x2)32=tan−1x(−1√1+x2)+x√1+x2+C