A 30.00 mL sample of 0.100 M "HOI"HOI is titrated using 0.100 M "NaOH"NaOH, K_a=2.3xx10^-11Ka=2.3×10−11 for "HOI"HOI?
A) write a balanced net-ionic equation for the titration reaction.
B) calculate the pH of the titration mixture at the equivalence point.
C) would methyl red be a suitable indicator for the titration?
A) write a balanced net-ionic equation for the titration reaction.
B) calculate the pH of the titration mixture at the equivalence point.
C) would methyl red be a suitable indicator for the titration?
1 Answer
"HOI"(aq) + "NaOH"(aq) -> "NaOI"(aq) + "H"_2"O"(l)HOI(aq)+NaOH(aq)→NaOI(aq)+H2O(l)
Removing the spectator ion
color(blue)("HOI"(aq) + "OH"^(-)(aq) -> "OI"^(-)(aq) + "H"_2"O"(l))HOI(aq)+OH−(aq)→OI−(aq)+H2O(l)
Clearly,
We therefore know that
((0.100 cancel"mol HOI")/cancel"L" xx 0.0300 cancel"L" xx ("1 mol OI"^(-))/cancel("1 mol HOI"))/("0.0300 L" + "0.0300 L") = "0.0500 M OI"^(-)
Being an anion,
K_b = K_w/K_a = 10^(-14)/(2.3 xx 10^(-11)) = 4.35 xx 10^(-4)
at
"OI"^(-)(aq) + "H"_2"O"(l) rightleftharpoons "OH"^(-)(aq) + "HOI"(aq)
K_b = (["OH"^(-)]["HOI"])/(["OI"^(-)])
= x^2/(0.0500 - x)
This
4.35 xx 10^(-4) ~~ x^2/0.0500
x_1 -= ["OH"^(-)] = sqrt(0.0500K_b)
= 4.66 xx 10^(-3) "M"
And this
x_1/(["OI"^(-)]_i) xx 100% = 9.33%
So, we adjust accordingly.
x_2 = sqrt((0.0500 - x_1)K_b) = "0.00444 M"
x_3 = sqrt((0.0500 - x_2)K_b) = "0.00445 M"
x_4 = sqrt((0.0500 - x_3)K_b) = "0.00445 M"
and our answer has converged, showing that the percent dissociation is actually
Therefore, the
color(blue)("pH") = 14 - "pOH"
= 14 + log["OH"^(-)]
= color(blue)(11.65)
This must mean that
(Indeed it is, because