How to Draw the R region of integration and change the order of integration (do NOT evaluate the integral)?

#int_0^1int_-sqrt(1-y^2)^sqrt(1-y^2)dxdy#

1 Answer
Jul 30, 2018

This integration is all about the unit circle, because the underlying relationship is:

  • #x^2 + y^2 = 1 implies {(x = +-sqrt(1 - y^2)),(y = +-sqrt(1 - x^2)):}#

Here, because #R# is defined as follows, it is specifically about the area within Q1 and Q2:

  • #{(-sqrt(1-y^2) le x le sqrt(1-y^2)),(qquad qquad qquad 0 le y le 1):}#

The order can be reversed as:

  • #{(0 le y le sqrt(1-x^2)),(-1 le x le 1):}#

So:

  • #int_0^1 int_-sqrt(1-y^2)^sqrt(1-y^2) \ dx \ dy = int_-1^1 int_0^sqrt(1-x^2) \ dy \ dx#