Recall that the Taylor series of #e^t# is
#e^t = sum_{n=0}^{oo}t^n/(n!)#
For this function, substitute #color(red)(t = x^2)#.
#e^color(red)(x^2) = sum_{n=0}^{oo}(color(red)(x^2))^n/(n!)#
Apply the ratio test.
#r = lim_{n->oo}|a_{n+1}/a_n|#
If #r < 0#, then the series is absolutely convergent.
#r = lim_{n->oo}|{(x^2)^{n+1}}/{(n+1)!} * {n!}/(x^2)^n|#
#r = lim_{n->oo}|((x^2)^n*x^2)/{(n+1) * n!} * {n!}/(x^2)^n|#
#r = lim_{n->oo}|(x^2)/(n + 1)|#
And since #x^2# is independent of the limit:
#r = x^2 * lim_{n->oo}|1/(n + 1)|#
#r = x^2 * 0#
#r = 0#
Regardless of the value of #x#, the Taylor series absolutely converges. The interval of convergence then must be #(-oo, oo)#.