If #2costheta=x+1/x# then prove that the value of the #x^n+1/(x^n), ninN# is #2cosntheta#?
↳Redirected from
"How do I generate the electron configuration of iron?"
Please see the explanation below.
By complex numbers,
#i^2=-1#
#cos^2theta+sin^2theta=1#
Let
#x=costheta+isintheta#
#1/x=1/(costheta+isintheta)=1/(costheta+isintheta)*(costheta-isintheta)/(costheta-isintheta)#
#=(costheta-isintheta)/(cos^2theta-i^2sin^2theta)=costheta-isintheta#
#x+1/x=2costheta#
By Demoivre's theorem
For #n in NN#
#x^n=(costheta+isintheta)^n=cos(ntheta)+isin(ntheta)#
#1/x^n=(costheta-isintheta)^n=cos(ntheta)-isin(ntheta)#
#x^n+1/x^n=2cos(ntheta)#
Given
#x+1/x=2costheta#
We get
#x^2-2costheta*x+1=0#
By sridharacharya's formula we get
#x=(2costhetapmsqrt((2costheta)^2-4*1*1))/2#
#=>x=(2costhetapmsqrt(-4(1-cos^2theta)))/2#
#=>x=costhetapmisintheta#
When #x=costheta+isintheta#
then #1/x=1/(costheta+isintheta)#
#=(costheta-isintheta)/((costheta-isintheta)(costheta+ isintheta))#
#=(costheta-isintheta)/(cos^2theta+sin^2theta)#
#=costheta-isintheta#
So #x^n=(costheta+isintheta)^n#
#=cosntheta+isinntheta#
[by De Moivre's Theorem.]
And similarly
#1/x^n=(costheta-isintheta)^n#
#=cosntheta-isinntheta#
Hence adding we get
#x^n+1/x^n=2cosntheta#
Similarly we get the same result when #x=costheta-isintheta#
By de Moivre's identity we know
#
\cos \theta = (e^(i \theta)+e^(-i\theta))/2
#
then
#
2\cos \theta = e^(i \theta)+e^(-i\theta)
#
then
#
e^(i n\theta)+e^(-i n\theta) = 2\cos(n\theta)
#