What is the period of f(t)=sin( t / 30 )+ cos( (t)/ 42) f(t)=sin(t30)+cos(t42)?

1 Answer
Aug 1, 2018

The period is T=420piT=420π

Explanation:

The period TT of a periodic function f(x)f(x) is given by

f(x)=f(x+T)f(x)=f(x+T)

Here,

f(t)=sin(t/30)+cos(t/42)f(t)=sin(t30)+cos(t42)

Therefore,

f(t+T)=sin(1/30(t+T))+cos(1/42(t+T))f(t+T)=sin(130(t+T))+cos(142(t+T))

=sin(t/30+T/30)+cos(t/42+T/42)=sin(t30+T30)+cos(t42+T42)

=sin(t/30)cos(T/30)+cos(t/30)sin(T/30)+cos(t/42)cos(T/42)-sin(t/42)sin(T/42)=sin(t30)cos(T30)+cos(t30)sin(T30)+cos(t42)cos(T42)sin(t42)sin(T42)

Comparing,

f(t)=f(t+T)f(t)=f(t+T)

{(cos(T/30)=1),(sin(T/30)=0),(cos(T/42)=1),(sin(T/42)=0):}

<=>, {(T/30=2pi),(T/42=2pi):}

<=>, {(T=60pi),(T=84pi):}

The LCM of 60pi and 84pi is

=420pi

The period is T=420pi

graph{sin(x/30)+cos(x/42) [-83.8, 183.2, -67.6, 65.9]}