Using the voltage from the following Galvanic cell, calculate K_(sp)Ksp for Ag_2SO_4Ag2SO4 (s)?
Pb(s)|Pb^(2+)(1.8M)||Ag^(+)("satd "Ag_2SO_4)|Ag(s)Pb(s)∣∣Pb2+(1.8M)∣∣∣∣Ag+(satd Ag2SO4)∣∣Ag(s)
E_(cell)=0.83" V"Ecell=0.83 V
1 Answer
K_(sp) = 1.03 xx 10^(-5)Ksp=1.03×10−5
compared to the literature value of around
It looks like the point of this is to:
- Find
E_(cell)^@E∘cell using reference values you should be given. - Use
E_(cell)Ecell to findQ_cQc for these concentrations, assuming that the silver sulfate precipitate is in equilibrium with its ions already. - Find
K_(sp)Ksp , knowing that saturated solutions satisfy the condition given in(2)(2) .
You should be given:
E_(red)^@("Pb"^(2+)->"Pb") = -"0.13 V"E∘red(Pb2+→Pb)=−0.13 V
E_(red)^@("Ag"^(+)->"Ag") = "0.80 V"E∘red(Ag+→Ag)=0.80 V
Thus,
E_(cell)^@ = "0.80 V" - (-"0.13 V") = "0.93 V"E∘cell=0.80 V−(−0.13 V)=0.93 V .
The next thing is that we can set up
"Pb"(s) + 2"Ag"^(+)(aq) -> "Pb"^(2+)(aq) + 2"Ag"(s)Pb(s)+2Ag+(aq)→Pb2+(aq)+2Ag(s)
Q_c = (["Pb"^(2+)])/(["Ag"^(+)]^2)Qc=[Pb2+][Ag+]2
= ("1.8 M")/(["Ag"^(+)]^2)=1.8 M[Ag+]2
And now let's put that off to the side, and solve for it last. At
E_(cell) = E_(cell)^@ - ("0.0592 V")/n log Q_cEcell=E∘cell−0.0592 VnlogQc
Now we solve algebraically for an expression for
"0.0592 V"/nlog Q_c = E_(cell)^@ - E_(cell)0.0592 VnlogQc=E∘cell−Ecell
For now,
=> log Q_c = n/"0.0592 V"(E_(cell)^@ - E_(cell))⇒logQc=n0.0592 V(E∘cell−Ecell)
" "" "" "" "= ("2 mol e"^(-)/"1 mol atoms")/("0.0592 V") cdot ("0.93 V" - "0.83 V") =2 mol e−1 mol atoms0.0592 V⋅(0.93 V−0.83 V)
" "" "" "" "= 3.38 =3.38
Therefore,
Q_c = 10^(3.38) = 2390Qc=103.38=2390
Lastly, we can solve for
"2390 M"^(-1) = ("1.8 M")/(["Ag"^(+)]^2)2390 M−1=1.8 M[Ag+]2
["Ag"^(+)] = sqrt("1.8 M"/("2390 M"^(-1))) = "0.0274 M"[Ag+]=√1.8 M2390 M−1=0.0274 M
Two silver cations and one sulfate anion are in the equilibrium:
"Ag"_2"SO"_4(s) rightleftharpoons 2"Ag"^(+)(aq) + "SO"_4^(2-)(aq)Ag2SO4(s)⇌2Ag+(aq)+SO2−4(aq)
Due to the coefficients above, it must be recognized that:
ul(["Ag"^(2+)] = 2["SO"_4^(2-)])
From this, we find the
color(blue)(K_(sp)) = ["Ag"^(+)]^2["SO"_4^(2-)]
= ("0.0274 M")^2("0.0274 M"/2)
= color(blue)(1.03 xx 10^(-5))
This is not that far off from the actual one, yay! The actual value should have been