How do you simplify \frac { x ^ { 2} } { ( x - 6) ^ { 2} ( x + 1) }?

1 Answer
Aug 3, 2018

" "
color(red)(\frac { x ^ { 2} } { ( x - 6) ^ { 2} ( x + 1) }=x^2/(x^3-11x^2+24x+36)

Explanation:

" "
We have the rational expression:

color(blue)(\frac { x ^ { 2} } { ( x - 6) ^ { 2} ( x + 1) }

Using the identity: color(green)((a-b)^2 -= (a^2-2ab+b^2)

rArr x^2/[(x^2-12x+36)*(x+1)]

Multiply both the factors at the denominator:

rArr [(x^2-12x+36)*(x+1)]

rArr x(x^2-12x+36)+1(x^2-12x+36)

rArr x^3-12x^2+36x+x^2-12x+36

Combine the like terms and simplify:

rArr x^3-12x^2+x^2+36x-12x+36

rArr x^3-11x^2+24x+36

In the next step, write the numerator with the above simplified denominator:

rArr x^2/[x^3-11x^2+24x+36]

Hence,

color(green)(\frac { x ^ { 2} } { ( x - 6) ^ { 2} ( x + 1) }=x^2/(x^3-11x^2+24x+36)

Hope this helps.