How do you long divide #(x^2)/(2x + 4)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Guillaume L. Aug 3, 2018 #x^2/(2x+4)=x/2-1+2/(x+2)# Explanation: #=1/2*x^2/(x+2)# #=1/2*(x(x+2)-2x)/(x+2)# #=1/2*(x(x+2)-2(x+2)+4)/(x+2)# #=1/2(x-2+4/(x+2))# #=x/2-1+2/(x+2)# \0/ Here's our answer ! Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1597 views around the world You can reuse this answer Creative Commons License