How do you long divide #(12x³-11x²-27x-9) / (4x+3)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Guillaume L. Aug 3, 2018 #(12x^3-11x^2-27x-9)/(4x+3)=3x^2-5x-3# Explanation: #(12x^3-11x^2-27x-9)/(4x+3)# #=1/4*(12x^3-11x^2-27x-9)/(x+3/4)# #=1/4*(12x^2(x+3/4)-20x^2-27x-9)/(x+3/4)# #=1/4*(12x^2(x+3/4)-20x(x+3/4)-12x-9)/(x+3/4)# #=1/4*(12x^2(x+3/4)-20x(x+3/4)-12(x+3/4))/(x+3/4)# #=1/4(12x^2-20x-12)# #=3x^2-5x-3# \0/ Here's our answer ! Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1816 views around the world You can reuse this answer Creative Commons License