How do you find the values of sin2θ and cos2θ when cosθ=1213?

2 Answers
Aug 4, 2018

Below

Explanation:

θ can be in the first quadrant 0θ90 or the fourth quadrant 270θ360

If θ is in the first quadrant,
then
sinθ=513
cosθ=1213
tanθ=512

Therefore,
sin2θ=2sinθcosθ=2×513×1213=120169

cos2θ=cos2θsin2θ=(1213)2(513)2=14416925169=119169

If θ is in the fourth quadrant,
then
sinθ=513
cosθ=1213
tanθ=512

Therefore,
sin2θ=2sinθcosθ=2×513×1213=120169

cos2θ=cos2θsin2θ=(1213)2(513)2=14416925169=119169

Aug 4, 2018

sin2θ=120169,θQ1and120169,θQ4.

cos2θ=119169

Explanation:

See my answer in

https://socratic.org/questions/if-cos-a-5-13-how-do-you-find-sina-and-tana

As a continuation,

sinθ=513,θQ1 and it is 513,θQ4.

sin2θ=2sinθcosθ=2(513)(1213)

=120169,θQ1and

=2(513)(1213)=120169,θQ4.

cos2θ=cos2θsin2θ=(1213)2(±513)2

=119169