What is the period of #f(t)=cos ( ( 8 t ) / 3 ) #?

1 Answer
Aug 5, 2018

#color(blue)("Period " = 3/4 pi#

Explanation:

Standard form of cosine function is #f(x) = A cos(Bx - C) + D#

#"Given : " f(t) = cos (8/3 t)#

#A = 1, B = 8/3, C = D = 0#

#Amplitude = |A| = 1#

#"Period " = (2pi) / |B| = (2pi) / |8/3| = 3/4 pi#

#"Phase Shift " = (-C) / B = 0#

#"Vertical Shift " = D = 0#

graph{cos (8/3 x) [-10, 10, -5, 5]}