How do you use the ratio test to test the convergence of the series ∑(n!)/(n^n)n!nn from n=1 to infinity?

1 Answer
Aug 5, 2018

The series converges.

Explanation:

The term of the series is

a_n=(n!)/(n^n)an=n!nn

The ratio test is

|a_(n+1)/a_n|=|((n+1)!)/((n+1)^(n+1))*n^n/(n!)|an+1an=∣ ∣(n+1)!(n+1)n+1nnn!∣ ∣

=|((n+1))/((n+1)^(n+1))*n^n|=∣ ∣(n+1)(n+1)n+1nn∣ ∣

=|(n^n)/(n+1)^n|=nn(n+1)n

Therefore,

lim_(n->oo)|a_(n+1)/a_n|=lim_(n->oo)|(n^n)/(n+1)^n|

=lim_(n->oo)(n/(n+1))^n

=lim_(n->oo)((n+1)/(n))^-n

=1/e

As

lim_(n->oo)|a_(n+1)/a_n| <1

The series converges.