Let the equations #y-m_1x=0andy-m_2x=0# are two straight lines represented by the given equation of pair of straight lines.Here #m_1=tanalphaandm_2=tanbetaand beta>alpha#
Hence
#(y-m_1)(y-m_2x)=y^2-(2h)/bxy+a/bx^2#
So
#m_1+m_2==(2h)/bandm_1m_2=a/b#
If #theta# be the angle subtended by angle bisector (#y=mx#) of the pair of straight line with the positive direction of X-axis ,then #m=tantheta#
Now it is obvious that
#theta-alpha=beta-theta#
So
#alpha+beta=2theta#
#=>tan(alpha+beta)=tan(2theta)#
#=>(tanalpha+tanbeta)/(1-tanalphatanbeta)=(2tantheta)/(1-tan^2theta)#
#=>(m_1+m_2)/(1-m_1m_2)=(2m)/(1-m^2)#
#=>((2h)/b)/(1-a/b)=(2m)/(1-m^2)#
#=>h/(b-a)=m/(1-m^2)#
#=>h(1-m^2)=(b-a)m#
#=>h(1-m^2)+(a-b)m=0#