How to find the trigonometric equation for 3(cos x - 2sin^2 x) = cos x - 23(cosx2sin2x)=cosx2 ?

2 Answers
Aug 7, 2018

2 cos x - 3 cos 2x = 12cosx3cos2x=1

Explanation:

3(cos x - 2 sin^2 x) = cos x - 23(cosx2sin2x)=cosx2

1 - 2sin^2 x = cos 2x12sin2x=cos2x

:. 3 (cos x - cos 2x -1) = cos x - 2

3 cos x - 3 cos 2x - 3 = cos x - 2

3 cos x - cos x - 3 cos 2x = 3 - 2

2 cos x - 3 cos 2x = 1

Is this your requirement?

Aug 7, 2018

(cos x + 1 )(cos x - 2/3 ) = 0
rArr x = { ( 2 k + 1 ) pi}, { 2kpi +- cos^(-1)( 2/3 )},
k = 0, +-1, +-2, +-3, ... -

Explanation:

Using sin^2x = 1- cos^2x and c = cos x,

6c^2 + 2 c - 4 = 2 ( 3 c^2 + c - 2 ) = 0

#rArr (cos x+1)( cos x - 2/3 ) = 0