A particle is projected at a definite angle alphaα to the horizontal passes through the points (a,b)(a,b) and (b,a)(b,a), referred to horizontal and vertical axes through the point of projection?

Calculate range and tanalphatanα in terms of a and b?

2 Answers
Aug 9, 2018

The answers are tanalpha=(b^2+ab+a^2)/(ab)tanα=b2+ab+a2ab and the range is =(a+b)=(a+b)

Explanation:

The trajectory of a projectile in the x-yxy plane is given by the equation

y=xtantheta-(g/(2u^2cos^2theta))x^2y=xtanθ(g2u2cos2θ)x2

Here,

The initial velocity is =u=u

The angle is theta=alphaθ=α

The acceleration due to gravity is =g=g

The points are =(a,b)=(a,b) and =(b,a)=(b,a)

Therefore,

b=atanalpha-(g/(2u^2cos^2alpha))a^2b=atanα(g2u2cos2α)a2.............(1)(1)

a=btanalpha-(g/(2u^2cos^2alpha))b^2a=btanα(g2u2cos2α)b2.............(2)(2)

Multiply equation (1)(1) by b^2b2 and equation (2)(2) by a^2a2

b^3=ab^2tanalpha-(g/(2u^2cos^2alpha))a^2b^2b3=ab2tanα(g2u2cos2α)a2b2.............(3)(3)

a^3=a^2btanalpha-(g/(2u^2cos^2alpha))b^2a^2a3=a2btanα(g2u2cos2α)b2a2.............(4)(4)

Then,

(3)- (4)(3)(4) is

b^3-a^3=ab^2tanalpha-a^2btanalphab3a3=ab2tanαa2btanα

=ab(b-a)tanalpha=ab(ba)tanα

But,

b^3-a^3=(b-a)(b^2+ab+a^2)b3a3=(ba)(b2+ab+a2)

Therefore,

tanalpha=(b^3-a^3)/(ab(b-a))=(cancel(b-a)(b^2+ab+a^2))/(abcancel(b-a))

=(b^2+ab+a^2)/(ab)

The range is when

a=0 or b=0

Therefore,

0=atanalpha-(g/(2u^2cos^2alpha))a^2.............(3)

0=btanalpha-(g/(2u^2cos^2alpha))b^2.............(4)

Then,

(4)- (3) is

(b-a)tanalpha=(b^2-a^2)(g/(2u^2cos^2alpha))

u^2=(g(a+b))/(2tanalphacos^2alpha)=(g(a+b))/(sin2alpha)

The range is

r=u^2sin(2alpha)/g=(g(a+b))/(sin2alpha)*sin(2alpha)/g=a+b

Aug 9, 2018
  • " Range is: " qquad( a^2 + b^2 + ab )/( a+b )

  • qquad tan alpha = (a^2 + b^2 + ab)/(ab)

Explanation:

Projectile motion is parabolic . This is easy to show, by replacing parameter t, in the equations for horizontal and vertical displacements, by the fixed values, namely u_x, u_y, alpha:

  • qquad qquad {(x(t) = u_x t),(y(t) = u_y t - 1/2 g t^2),(tan alpha = u_y / u_x):}

So for parabola passing through origin:

  • y = x ( lambda x + mu) qquad " Roots " to qquad {(x = 0),(x = bb(- mu/lambda) qquad square):}

It follows from the IV's that:

  • {(b = a ( lambda a + mu)),(a = b ( lambda b + mu) ):} qquad " or " qquad [(a,1),(b,1)][(lambda),(mu)] = [(b/a),(a/b)]

Noting the restrictions that make the algebra impossible, or the matrix singular (esp a ne b), this leaves:

lambda = - (a+b)/(ab) qquad qquad mu = (a^2 + b^2 + ab)/(ab)

The range is the second root of y(x), as stated in square above:

:. " Range is: " ( a^2 + b^2 + ab )/( a+b )

tan alpha is the derivative (wrt x) of the parabola at the Origin:

  • "ie " qquad qquad tan alpha = (dy/dx )_(x = 0) qquad equiv (doty/dotx )_(t = 0) qquad = y'(0)

y' = 2 lambda x + mu

y'(0) = mu = bb( (a^2 + b^2 + ab)/(ab) = tan alpha)