Solve the following differential equations: 2x^(2)y (d^(2)y)/(dx^(2))+4y^(2)=x^(2)(dy/dx)^(2)+2xy(dy/dx)2x2yd2ydx2+4y2=x2(dydx)2+2xy(dydx)?

1 Answer
Aug 11, 2018

y = x^2(C_1+C_2 ln x)^2 y=x2(C1+C2lnx)2

Explanation:

Making the change of variables y(x) = x^2 z^2y(x)=x2z2 and substituting into the DE we get

4x^5 z^3(z'+x z'') = 0

so assuming z \ne 0 we have

z'+xz'' = 0\to z = C_1+C_2 ln x

and then

y = x^2(C_1+C_2 ln x)^2