Solve the following systems of simultaneous equations using the inverse matrix of Gauss Jordan X1+2x2+3x3=3? 2x1+4x2+5x3=4? 3x1+5x2+6x3=8?

1 Answer
Aug 14, 2018

The solution is ((x_1),(x_2),(x_3))=((7),(-5),(2))

Explanation:

The augmented matrix is

A=((1,2,3,|,3),(2,4,5,|,4),(3,5,6,|,8))

The main matrix is

A_1=((1,2,3),(2,4,5),(3,5,6))

The inverse is calculated as follows

Write side by side A and I_3 on the right

((1,2,3),(2,4,5),(3,5,6))((1,0,0),(0,1,0),(0,0,1))

Perform the row operations

R2larrR2-2xxR1 and R3larrR3-3xxR1

((1,2,3),(0,0,-1),(0,-1,-3))((1,0,0),(-2,1,0),(-3,0,1))

R3harrR2

((1,2,3),(0,-1,-3),(0,0,-1))((1,0,0),(-3,0,1),(-2,1,0))

R2larr(R2)/(-1) and R3larr(R3)/(-1)

((1,2,3),(0,1,3),(0,0,1))((1,0,0),(3,0,-1),(2,-1,0))

R1larrR1-3xxR3 and R2larrR2-3xxR3

((1,2,0),(0,1,0),(0,0,1))((-5,3,0),(-3,3,-1),(2,-1,0))

R1larrR1-2xxR2

((1,0,0),(0,1,0),(0,0,1))((1,-3,2),(-3,3,-1),(2,-1,0))

Therefore,

A_1^-1=((1,-3,2),(-3,3,-1),(2,-1,0))

Then,

((x_1),(x_2),(x_3))=((1,-3,2),(-3,3,-1),(2,-1,0))*((3),(4),(8)

=((7),(-5),(2))