The augmented matrix is
A=((1,2,3,|,3),(2,4,5,|,4),(3,5,6,|,8))
The main matrix is
A_1=((1,2,3),(2,4,5),(3,5,6))
The inverse is calculated as follows
Write side by side A and I_3 on the right
((1,2,3),(2,4,5),(3,5,6))((1,0,0),(0,1,0),(0,0,1))
Perform the row operations
R2larrR2-2xxR1 and R3larrR3-3xxR1
((1,2,3),(0,0,-1),(0,-1,-3))((1,0,0),(-2,1,0),(-3,0,1))
R3harrR2
((1,2,3),(0,-1,-3),(0,0,-1))((1,0,0),(-3,0,1),(-2,1,0))
R2larr(R2)/(-1) and R3larr(R3)/(-1)
((1,2,3),(0,1,3),(0,0,1))((1,0,0),(3,0,-1),(2,-1,0))
R1larrR1-3xxR3 and R2larrR2-3xxR3
((1,2,0),(0,1,0),(0,0,1))((-5,3,0),(-3,3,-1),(2,-1,0))
R1larrR1-2xxR2
((1,0,0),(0,1,0),(0,0,1))((1,-3,2),(-3,3,-1),(2,-1,0))
Therefore,
A_1^-1=((1,-3,2),(-3,3,-1),(2,-1,0))
Then,
((x_1),(x_2),(x_3))=((1,-3,2),(-3,3,-1),(2,-1,0))*((3),(4),(8)
=((7),(-5),(2))