Rewriting the given Diff. Eqn., as,
#dy/siny=2/(1+tanx)dx,# we find that, it is Separable Variable type.
#:. cscydy=(2cosx)/(sinx+cosx)dx.#
The General Solution (GS) is obtained by integrating term-wise.
#:. intcsc y dy=int(2cosx)/(sinx+cosx)dx+lnc.#
#:. ln(tan(y/2))=int{(sinx+cosx)+(cosx-sinx)}/(sinx+cosx)dx+lnc.#
#=int{(sinx+cosx)/(sinx+cosx)+(cosx-sinx)/(sinx+cosx)}dx+lnc,#
#=int1dx+int1/tdt, #
#where, sinx+cosx=t rArr (cosx-sinx)dx=dt.#
#:. ln(tan(y/2))=x+lnt+lnc, i.e., x+ln(sinx+cosx)+lnc.#
#:. ln(tan(y/2))-ln(sinx+cosx)=x+lnt, or, #
#ln{(tan(y/2))/(sinx+cosx)}=lne^x+lnc=ln(ce^x),#
#:. tan(y/2)/(sinx+cosx)=ce^x.#
#:. tan(y/2)=c(sinx+cosx)e^x.#
#:. y/2=arc tan{c(sinx+cosx)e^x}.#
# rArr y=2arc tan{c(sinx+cosx)e^x},# is the desired GS.
Enjoy Maths.!