(1+tanx)dy=2siny dx solve differential equation?

1 Answer
Sep 18, 2017

y=2arc tan{c(sinx+cosx)e^x},y=2arctan{c(sinx+cosx)ex}, is the GS.

Explanation:

Rewriting the given Diff. Eqn., as,

dy/siny=2/(1+tanx)dx,dysiny=21+tanxdx, we find that, it is Separable Variable type.

:. cscydy=(2cosx)/(sinx+cosx)dx.

The General Solution (GS) is obtained by integrating term-wise.

:. intcsc y dy=int(2cosx)/(sinx+cosx)dx+lnc.

:. ln(tan(y/2))=int{(sinx+cosx)+(cosx-sinx)}/(sinx+cosx)dx+lnc.

=int{(sinx+cosx)/(sinx+cosx)+(cosx-sinx)/(sinx+cosx)}dx+lnc,

=int1dx+int1/tdt,

where, sinx+cosx=t rArr (cosx-sinx)dx=dt.

:. ln(tan(y/2))=x+lnt+lnc, i.e., x+ln(sinx+cosx)+lnc.

:. ln(tan(y/2))-ln(sinx+cosx)=x+lnt, or,

ln{(tan(y/2))/(sinx+cosx)}=lne^x+lnc=ln(ce^x),

:. tan(y/2)/(sinx+cosx)=ce^x.

:. tan(y/2)=c(sinx+cosx)e^x.

:. y/2=arc tan{c(sinx+cosx)e^x}.

rArr y=2arc tan{c(sinx+cosx)e^x}, is the desired GS.

Enjoy Maths.!