(1+tanx)dy=2siny dx solve differential equation?

1 Answer
Sep 18, 2017

# y=2arc tan{c(sinx+cosx)e^x},# is the GS.

Explanation:

Rewriting the given Diff. Eqn., as,

#dy/siny=2/(1+tanx)dx,# we find that, it is Separable Variable type.

#:. cscydy=(2cosx)/(sinx+cosx)dx.#

The General Solution (GS) is obtained by integrating term-wise.

#:. intcsc y dy=int(2cosx)/(sinx+cosx)dx+lnc.#

#:. ln(tan(y/2))=int{(sinx+cosx)+(cosx-sinx)}/(sinx+cosx)dx+lnc.#

#=int{(sinx+cosx)/(sinx+cosx)+(cosx-sinx)/(sinx+cosx)}dx+lnc,#

#=int1dx+int1/tdt, #

#where, sinx+cosx=t rArr (cosx-sinx)dx=dt.#

#:. ln(tan(y/2))=x+lnt+lnc, i.e., x+ln(sinx+cosx)+lnc.#

#:. ln(tan(y/2))-ln(sinx+cosx)=x+lnt, or, #

#ln{(tan(y/2))/(sinx+cosx)}=lne^x+lnc=ln(ce^x),#

#:. tan(y/2)/(sinx+cosx)=ce^x.#

#:. tan(y/2)=c(sinx+cosx)e^x.#

#:. y/2=arc tan{c(sinx+cosx)e^x}.#

# rArr y=2arc tan{c(sinx+cosx)e^x},# is the desired GS.

Enjoy Maths.!