#2e^(x)=3-e^(x+1)# what is the value of #x# in this question?

can somebody solve this please

2 Answers
Mar 10, 2018

#x=ln|3/(e+2)|#
#x=-0.4529=-0.453#

Explanation:

#color(red)(a^X=n<=>X=log_an)#
#2e^(x)=3-e^(x+1)=>e^(x+1)+2e^x=3=>e^x(e^1+2)=3#
#e^x=3/(e+2)<=>x=log_e|3/(e+2)|=ln|3/(e+2)|#
Note:
#x=log_e|3/(e+2)|=(log_(10)|3/(e+2)|)/(log_10 e),#....change base.
#x=(log_(10)|3/(e+2)|)*log_e 10#
#x=[log_10 3-log_10 (e+2)]*log_e 10#
#x=[log_10 3-log_10(2.7183+2)*log_e 10#
#x=[log_10 3-log_10 4.7182]*log_e 10#
#x=[0.4771-0.6738]*(2.3026)#
#x=(-0.1967)(2.3026)#
#x=-0.4529=-0.453#
Remember: #color(red)((1)e=2.7183...and(2)log_e 10=2.3026...)#
#color(red)((3)log_x y=(log_10 y)/(log_10 x)#....(to change base)
#color(red)((4)1/(log_m n)=log_n m#

Mar 10, 2018

Real solution:

#x = ln (3/(2+e))#

Complex solutions:

#x = ln (3/(2+e)) + 2kpi i" "# for any integer #k#

Explanation:

Given:

#2e^x = 3-e^(x+1)#

Add #e^(x+1) = e e^x# to both sides to get:

#(2+e)e^x = 3#

Divide both sides by #2+e# to get:

#e^x = 3/(2+e)#

We can find the real solution by taking the natural log of both sides to find:

#x = ln (3/(2+e))#

To find the complex solutions note that #e^(2kpi i) = 1# for any integer #k#. Hence:

#e^(ln (3/(2+e)) + 2kpi i) = 3/(2+e) * e^(2kpi i) = 3/(2+e)#

So the general solution is:

#x = ln (3/(2+e)) + 2kpi i" "# for any integer #k#