#36/[x^2-9]= (2x)/[x + 3]- 1/[1]#
#1/1# can be anything, make the right side denominators equal.
#36/[color(red)(x^2-9)]= color(blue)((2x)/[x + 3]- (x+3)/(x+3))" "larr# factorise and simplfy
#36/color(red)[(x+3)(x-3)]=color(blue)( (2x -(x+3))/(x+3))#
#36/[(x+3)(x-3)]= (2x -x-3)/(x+3)#
#36/[(x+3)(x-3)]= (x-3)/(x+3)" "color(forestgreen)(xx (x+3))#
#(36color(forestgreen)(xx cancel((x+3))))/[cancel((x+3))(x-3)]= ((x-3)color(forestgreen)(xxcancel ((x+3))))/cancel((x+3))" "larr# cancel
#36/((x-3)) = (x-3)" "larr# cross multiply
#(x-3)^2 =36" "larr# square root both sides
#x- 3= +-6#
If #x-3 =+ 6" "rarr x = 9#
If #x-3=-6" "rarr x = -3#
However, #x=-3# will make the denominators 0, so this is an extraneous solution which we will reject.