Question #07791

1 Answer
Nov 5, 2015

14"H"_text((aq])^(+) + 6"I"_text((aq])^(-) + "Cr"_2"O"_text(7(aq])^(2-) -> 3"I"_text(2(l]) + 2"Cr"_text((aq])^(3+) + 7"H"_2"O"_text((l])14H+(aq]+6I(aq]+Cr2O27(aq]3I2(l]+2Cr3+(aq]+7H2O(l]

Explanation:

You're dealing with a redox reaction in which the iodide anions are being oxidized to iodine and the dichromate anions are being reduced to chromium(III) cations.

"I"_text((aq])^(-) + "Cr"_2"O"_text(7(aq])^(2-) -> "Cr"_text((aq])^(3+) + "I"_text(2(l])I(aq]+Cr2O27(aq]Cr3+(aq]+I2(l]

Before doing anything else, assign oxidation numbers to the atoms that take part in the reaction.

stackrel(color(blue)(-1))("I")""^(-) + stackrel(color(blue)(+6))("Cr")_2 stackrel(color(blue)(-2))("O")""_7^(2-) -> stackrel(color(blue)(+3))("Cr")""^(3+) + stackrel(color(blue)(0))("I")_21I++6Cr22O27+3Cr3++0I2

The oxidation numbers of the atoms on the reactants' side and on the products' side confirm that iodide is indeed being oxidized to iodine, since its oxidation number goes from color(blue)(-1)1 to color(blue)(0)0.

Likewise, chromium is being reduced, since its oxidation number goes from color(blue)(+6)+6 to color(blue)(+3)+3.

This means that your half-reactions will look like this

  • oxidation half-reaction

stackrel(color(blue)(-1))("I")""^(-) -> stackrel(color(blue)(0))("I")_21I0I2

Balance the iodine atoms by multiplying the iodide anions by 22

2stackrel(color(blue)(-1))("I")""^(-) -> stackrel(color(blue)(0))("I")_221I0I2

Each iodie anion will lose one electron, which means that wo iodide anions will lose a total of two electrons

2stackrel(color(blue)(-1))("I")""^(-) -> stackrel(color(blue)(0))("I")_2 + 2"e"^(-)21I0I2+2e

  • reduction half-reaction

stackrel(color(blue)(+6))("Cr")_2"O"_7^(2-) -> stackrel(color(blue)(+3))("Cr")""^(3+)+6Cr2O27+3Cr3+

Multiply the chromium(III) cations by 22 to get

stackrel(color(blue)(+6))("Cr")_2"O"_7^(2-) -> 2stackrel(color(blue)(+3))("Cr")""^(3+)+6Cr2O272+3Cr3+

Each chromium atom will gain three electrons, which means that two chromium atoms will gain a total of six electrons

stackrel(color(blue)(+6))("Cr")_2"O"_7^(2-) + 6"e"^(-) -> 2stackrel(color(blue)(+3))("Cr")""^(3+)+6Cr2O27+6e2+3Cr3+

You're in acidic solution, so you can balance the oxygen atoms by adding wter molecules and the hydrogen atoms by adding protons, "H"^(+)H+.

Add 77 water molecules to the products' side to balance the 77 oxygen atoms present on the reactants' side

stackrel(color(blue)(+6))("Cr")_2"O"_7^(2-) + 6"e"^(-) -> 2stackrel(color(blue)(+3))("Cr")""^(3+) + 7"H"_2"O"+6Cr2O27+6e2+3Cr3++7H2O

Add 1414 protons on the reactants' side to balance the hydrogen atoms

14"H"^(+) + stackrel(color(blue)(+6))("Cr")_2"O"_7^(2-) + 6"e"^(-) -> 2stackrel(color(blue)(+3))("Cr")""^(3+) + 7"H"_2"O"14H+++6Cr2O27+6e2+3Cr3++7H2O

Now, in any redox reaction, the number of electrons gained in the reduction half-raection must be equal to the number of electrons lost in the oxidation half-reaction.

This means that you must multiply the oxidation half-reaction by 33 to get a total of 66 electrons transferred in the redox reaction

{(2"I"^(-) -> "I"_2 + 2"e"^(-) | xx 3), (14"H"^(+) + "Cr"_2"O"_7^(2-) + 6"e"^(-) -> 2"Cr"^(3+) + 7"H"_2"O") :}

{(6"I"^(-) -> 3"I"_2 + 6"e"^(-)), (14"H"^(+) + "Cr"_2"O"_7^(2-) + 6"e"^(-) -> 2"Cr"^(3+) + 7"H"_2"O") :}

Now add the two half-reactions to get

6"I"^(-) + 14"H"^(+) + "Cr"_2"O"_7^(2-) + color(red)(cancel(color(black)(6"e"^(-)))) -> 3"I"_2 + color(red)(cancel(color(black)(6"e"^(-)))) + 2"Cr"^(3+) + 7"H"_2"O"

Finally, the balanced chemical equation for this redox reaction is

14"H"_text((aq])^(+) + 6"I"_text((aq])^(-) + "Cr"_2"O"_text(7(aq])^(2-) -> 3"I"_text(2(l]) + 2"Cr"_text((aq])^(3+) + 7"H"_2"O"_text((l])