Question #51bf7

1 Answer
Apr 13, 2016

=>f'(x)=(4x^2+1)/(xsqrt(1+x^2))^3

Explanation:

Step 1 : we have y=(2x^2-1)/(xsqrt(1+x^2))

This equation is of the form f(x)=g(x)/(h(x))

Where, g(x)=2x^2-1 and h(x)=xsqrt(1+x^2)

We will use the quotient rule to find the derivative.

=>f'(x)=(g'(x)h(x)-h'(x)g(x))/(h^2(x))

Step 2 : Lets solve the different parts:

g(x)=2x^2-1

=>color(red)(g'(x)=4x)

Step 3 : Next, to solve h'(x)

We have h(x)=xsqrt(1+x^2)

This is of the form h(x)=a(x)*b(x)

where, a(x)=x and b(x)=sqrt (1+x^2)

Apply product rule:

=>color(brown)(h'(x)=a'(x)b(x)+b'(x)a(x))

a(x)=x

=>color(blue)(a'(x)=1)

b(x)=sqrt (1+x^2)

=>b(x)=(1+x^2)^(1/2)

=>b'(x)=1/2(1+x^2)^(1/2-1)xx2x

Use color(green)(f(x)=x^n=>f'(x)=nx^(n-1))

=>b'(x)=(1+x^2)^(-1/2)xxx

=>b'(x)=1/(1+x^2)^(1/2)xxx

=>color(blue)(b'(x)=1/sqrt(1+x^2)xxx)

back to color(brown)(h'(x)=a'(x)b(x)+b'(x)a(x))

Put back the values to find h'(x)

=>h'(x)=sqrt (1+x^2)+1/sqrt(1+x^2)xx x xx x

=>h'(x)=(1+x^2+x^2)/sqrt(1+x^2)

=>color(red)(h'(x)=(1+2x^2)/sqrt(1+x^2))

Final step : Put back the values in f'(x) and simplify:

f'(x)=(g'(x)h(x)-h'(x)g(x))/(h^2(x))

=>f'(x)=(4x xxxsqrt(1+x^2) - (1+2x^2)/sqrt(1+x^2) xx (2x^2-1))/(xsqrt(1+x^2))^2

=>f'(x)=((4x^2 xx (1+x^2) - (1+2x^2) xx (2x^2-1))/(sqrt(1+x^2)))/((x^2)(sqrt(1+x^2))^2)

=>f'(x)=(4x^2 xx (1+x^2) - (1+2x^2) xx (2x^2-1))/((x^2)(sqrt(1+x^2))^3)

=>f'(x)=((4x^2+4x^4) - (4x^4-1))/((x^2)(sqrt(1+x^2))^3)

=>f'(x)=(4x^2+4x^4 -4x^4+1)/((x^2)(sqrt(1+x^2))^3)

=>f'(x)=(4x^2+1)/((x^2)(sqrt(1+x^2))^3)

This looks long and confusing. But if you solve one step at a time, its a piece of cake.

All the best..