How do you differentiate sqrt(cos(x))√cos(x) by first principles?
1 Answer
Explanation:
Let
Then:
(f(x+h)-f(x))/h = (sqrt(cos(x+h))-sqrt(cos(x)))/hf(x+h)−f(x)h=√cos(x+h)−√cos(x)h
color(white)((f(x+h)-f(x))/h) = ((sqrt(cos(x+h))-sqrt(cos(x)))(sqrt(cos(x+h))+sqrt(cos(x))))/(h(sqrt(cos(x+h))+sqrt(cos(x))))f(x+h)−f(x)h=(√cos(x+h)−√cos(x))(√cos(x+h)+√cos(x))h(√cos(x+h)+√cos(x))
color(white)((f(x+h)-f(x))/h) = (cos(x+h)-cos(x))/(h(sqrt(cos(x+h))+sqrt(cos(x))))f(x+h)−f(x)h=cos(x+h)−cos(x)h(√cos(x+h)+√cos(x))
color(white)((f(x+h)-f(x))/h) = ((cos(x)cos(h)-sin(x)sin(h))-cos(x))/(h(sqrt(cos(x+h))+sqrt(cos(x))))f(x+h)−f(x)h=(cos(x)cos(h)−sin(x)sin(h))−cos(x)h(√cos(x+h)+√cos(x))
color(white)((f(x+h)-f(x))/h) = (cos(x)(cos(h)-1)-sin(x)sin(h))/(h(sqrt(cos(x+h))+sqrt(cos(x))))f(x+h)−f(x)h=cos(x)(cos(h)−1)−sin(x)sin(h)h(√cos(x+h)+√cos(x))
Now:
cos t = 1/(0!) - t^2/(2!) + O(t^4)cost=10!−t22!+O(t4)
So:
(cos t - 1)/t = -t/(2!) + O(t^3)cost−1t=−t2!+O(t3)
And:
lim_(t->0) ((cos t - 1)/t) = 0
Also:
sin t = t/(1!) - O(t^3)
So:
sin t/t = 1 - O(t^2)
And:
lim_(t->0) (sin t/t) = 1
So we find:
lim_(h->0) (cos(x)(cos(h)-1)-sin(x)sin(h))/(h(sqrt(cos(x+h))+sqrt(cos(x))))
=lim_(h->0) (((cos(h)-1)/h*cos(x))-(sin(h)/h*sin(x)))/(sqrt(cos(x+h))+sqrt(cos(x)))
=((0*cos(x))-(1*sin(x)))/(sqrt(cos(x))+sqrt(cos(x)))
=-sin(x)/(2sqrt(cos(x)))
That is:
d/(dx) sqrt(cos(x)) = -sin(x)/(2sqrt(cos(x)))