Question #a9735

1 Answer
Mar 5, 2016

sin 2theta=24/25, cos 2theta=-7/25, tan 2theta=-24/7sin2θ=2425,cos2θ=725,tan2θ=247

Explanation:

It is known that
cos theta =3/5cosθ=35
And
0< theta<90^@0<θ<90

We also know that
sin theta = sqrt (1-cos^2 theta)sinθ=1cos2θ
Since thetaθ is an angle of the first quadrant sin theta>0sinθ>0 and we have
sin theta =(+)sqrt(1-(3/5)^2)=sqrt(1-9/25)=sqrt(16/25)=4/5sinθ=(+)1(35)2=1925=1625=45

It's also known that

sin 2theta=2sin theta *cos thetasin2θ=2sinθcosθ
=> sin 2theta=2*4/5*3/5=24/25sin2θ=24535=2425
And that
cos 2theta=cos^2 theta-sin^2 theta=(3/5)^2-(4/5)^2=(9-16)/25=-7/25cos2θ=cos2θsin2θ=(35)2(45)2=91625=725

So

tan 2theta=(sin 2theta)/(cos theta)=(24/cancel(25))/(-7/cancel(25))=-24/7