The resultant of the two forces 3N3N and2N2N at an angle thetaθ is doubled when first force in increased to 6N6N. Find thetaθ?

1 Answer
Mar 7, 2016

theta=(2pi)/3θ=2π3 or 120^@120

Explanation:

Formula for resultant force of two forces PP and QQ is given by R=sqrt(P^2+Q^2+2PxxQxxcostheta)R=P2+Q2+2P×Q×cosθ.

When two forces 3N3N and 2N2N are at an angle thetaθ, value of the first resultant is R_1R1 is given by

R_1=Nsqrt(3^2+2^2+2xx3xx2xxcostheta)=sqrt(13+12costheta)R1=N32+22+2×3×2×cosθ=13+12cosθ

When first force is increased to 6N6N, the resultant force R_2R2 is given by

R_2=Nsqrt(6^2+2^2+2xx6xx2xxcostheta)=sqrt(40+24costheta)R2=N62+22+2×6×2×cosθ=40+24cosθ

As R_2R2 is doubled

Nsqrt(40+24costheta)=2xxNsqrt(13+12costheta)N40+24cosθ=2×N13+12cosθ or

40+24costheta=4xx(13+12costheta)=52+48costheta40+24cosθ=4×(13+12cosθ)=52+48cosθ

Hence, 24costheta=-1224cosθ=12 or costheta=-1/2cosθ=12

and theta=(2pi)/3θ=2π3 or 120^@120