Formula for resultant force of two forces PP and QQ is given by R=sqrt(P^2+Q^2+2PxxQxxcostheta)R=√P2+Q2+2P×Q×cosθ.
When two forces 3N3N and 2N2N are at an angle thetaθ, value of the first resultant is R_1R1 is given by
R_1=Nsqrt(3^2+2^2+2xx3xx2xxcostheta)=sqrt(13+12costheta)R1=N√32+22+2×3×2×cosθ=√13+12cosθ
When first force is increased to 6N6N, the resultant force R_2R2 is given by
R_2=Nsqrt(6^2+2^2+2xx6xx2xxcostheta)=sqrt(40+24costheta)R2=N√62+22+2×6×2×cosθ=√40+24cosθ
As R_2R2 is doubled
Nsqrt(40+24costheta)=2xxNsqrt(13+12costheta)N√40+24cosθ=2×N√13+12cosθ or
40+24costheta=4xx(13+12costheta)=52+48costheta40+24cosθ=4×(13+12cosθ)=52+48cosθ
Hence, 24costheta=-1224cosθ=−12 or costheta=-1/2cosθ=−12
and theta=(2pi)/3θ=2π3 or 120^@120∘