Question #cab60
2 Answers
Apr 15, 2016
Recall the following identities:
#1. color(red)(secx=1/cosx)#
#2. color(darkorange)(tanx=sinx/cosx)#
#3. color(blue)(cotx=cosx/sinx)#
#4. color(purple)(sin^2x+cos^2x=1)#
Given the following identity, start the proof by working on the left side.
#secx/cosx-tanx/cotx=1#
Left side:
#(color(red)(1/cosx))/cosx-(color(darkorange)(sinx/cosx))/(color(blue)(cosx/sinx))#
#=1/cosx*1/cosx-sinx/cosx*sinx/cosx#
#=1/cos^2x-sin^2x/cos^2x#
#=(color(purple)(1-sin^2x))/cos^2x#
#=cos^2x/cos^2x#
#=color(green)(|bar(ul(color(white)(a/a)1color(white)(a/a)|)))#
Apr 15, 2016
Explanation:
LHS: