Prove that #cos(y-pi)+sin(y+pi/3)=0#?

2 Answers
Apr 18, 2016

Sorry #cos(y-pi)+sin(y+pi/3)!=0#, but #cos(y-pi)+sin(y+pi/3)=-cosy+1/2siny+sqrt3/2cosy#

Explanation:

We use the formulas #cos(A-B)=cosAcosB+sinAsinB# and

#sin(A+B)=sinAcosB+cosAsinB#

Hence #cos(y-pi)+sin(y+pi/3)#

= #cosycospi+sinysinpi+sinycos(pi/3)+cosysin(pi/3)#

As #cospi=-1#, #sinpi=0#, #cos(pi/3)=1/2# and #sin(pi/3)=sqrt3/2#

#cosycospi+sinysinpi+sinycos(pi/3)+cosysin(pi/3)#

= #cosyxx(-1)+sinyxx0+sinyxx1/2+cosyxxsqrt3/2#

= #-cosy+1/2siny+sqrt3/2cosy#

Apr 18, 2016

Perhaps, the solution is required.
If so, #y = kpi+pi/12, k = 0. +-1, +-2, +-3...

Explanation:

#cos (y-pi)=cos(pi-y)=-cos y#
#sin (y+pi/3)= sin y cos (pi/3) + cos y sin (pi/3)=(1/2)(sin y + sqrt 3 cos y)#

So, the given equation becomes
#sin y = (2-sqrt3) cos y#
#tan y = 2-sqrt 3#
The principal value of #y = pi/12#.
General value of #y = kpi+pi/12, k = 0. +-1, +-2, +-3...#