Question #55801

2 Answers
Apr 25, 2016

(sqrt(x+sqrt(x-4))+sqrt(x-4sqrt(x-4)))^2=4x-16

Explanation:

x=a

x^2=a^2

4sqrt(x-4)=b

16x-64=b^2

(sqrt(x+sqrt(x-4))+sqrt(x-4sqrt(x-4)))^2=(sqrt(a+b)+sqrt(a-b))^2

(sqrt(a+b)+sqrt(a-b))^2=a+cancel(b)+2*sqrt(a+b)*sqrt(a-b)+a-cancel(b)

(sqrt(a+b)+sqrt(a-b))^2=2a+2sqrt((a+b)(a-b))

(a+b)(a-b)=a^2-b^2

(sqrt(a+b)+sqrt(a-b))^2=2a+2sqrt(a^2-b^2)

(sqrt(a+b)+sqrt(a-b))^2=2x+2sqrt(x^2-16x+64)

(sqrt(a+b)+sqrt(a-b))^2=2x+2sqrt((x-8)^2)

(sqrt(a+b)+sqrt(a-b))^2=2x+2(x-8)

(sqrt(a+b)+sqrt(a-b))^2=2x+2x-16

(sqrt(a+b)+sqrt(a-b))^2=4x-16

(sqrt(x+sqrt(x-4))+sqrt(x-4sqrt(x-4)))^2=4x-16

Apr 25, 2016

Slightly different approach in the beginning to that of Ali Ergin but we end up at the same point part way through.

4x-64

Explanation:

Let a=4sqrt(x-4) giving

(sqrt(x+a)+sqrt(x-a)color(white)(.))^2

(sqrt(x+a)color(white)(.))^2 + 2sqrt(x+a)sqrt(x-a)+(sqrt(x-a)color(white)(.))^2

x+cancel(a)+ 2sqrt(x+a)sqrt(x-a)+x-cancel(a)

2x+2sqrt(x+a)sqrt(x-a)

2x+2sqrt((x+a)(x-a))

2x+2sqrt(x^2-a^2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

But a=4sqrt(x-4) => a^2=16(x-4)=16x-64

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So by substitution for a giving

2x+2sqrt(x^2-(16x-64))

2x+2sqrt(x^2-16x+64))

Note that (-8)xx(-8)=+64" and "-8-8=-16

2x+2sqrt((x-8)^2)

2x+2(x-8)

4x-64