Direct substitution of x=0 shows that the initial limit results in a 0/0 indeterminate form, and thus we can apply L'hopital's rule.
lim_(x->0)(tan(x)-x)/(xsin(x)) = lim_(x->0)(d/dx(tan(x)-x))/(d/dxxsin(x))
=lim_(x->0)(sec^2(x)-1)/(xcos(x)+sin(x))
As this again results in a 0/0 indeterminate form, we may apply L'hopital's rule once again:
=lim_(x->0)(d/dx(sec^2(x)-1))/(d/dx(xcos(x)+sin(x)))
=lim_(x->0)(2sec^2(x)tan(x))/(2cos(x)-xsin(x))
=(2sec^2(0)tan(0))/(2cos(0)-0sin(0))
=(2*1*0)/(2*1-0*0)
=0