Direct substitution of #x=0# shows that the initial limit results in a #0/0# indeterminate form, and thus we can apply L'hopital's rule.
#lim_(x->0)(tan(x)-x)/(xsin(x)) = lim_(x->0)(d/dx(tan(x)-x))/(d/dxxsin(x))#
#=lim_(x->0)(sec^2(x)-1)/(xcos(x)+sin(x))#
As this again results in a #0/0# indeterminate form, we may apply L'hopital's rule once again:
#=lim_(x->0)(d/dx(sec^2(x)-1))/(d/dx(xcos(x)+sin(x)))#
#=lim_(x->0)(2sec^2(x)tan(x))/(2cos(x)-xsin(x))#
#=(2sec^2(0)tan(0))/(2cos(0)-0sin(0))#
#=(2*1*0)/(2*1-0*0)#
#=0#