Question #91010

1 Answer
May 3, 2016

lim_(x->0)(tan(x)-x)/(xsin(x))=0

Explanation:

Direct substitution of x=0 shows that the initial limit results in a 0/0 indeterminate form, and thus we can apply L'hopital's rule.

lim_(x->0)(tan(x)-x)/(xsin(x)) = lim_(x->0)(d/dx(tan(x)-x))/(d/dxxsin(x))

=lim_(x->0)(sec^2(x)-1)/(xcos(x)+sin(x))

As this again results in a 0/0 indeterminate form, we may apply L'hopital's rule once again:

=lim_(x->0)(d/dx(sec^2(x)-1))/(d/dx(xcos(x)+sin(x)))

=lim_(x->0)(2sec^2(x)tan(x))/(2cos(x)-xsin(x))

=(2sec^2(0)tan(0))/(2cos(0)-0sin(0))

=(2*1*0)/(2*1-0*0)

=0