Let #vec v = {v_x,v_y,v_z}# and #hat e_x,hat e_y,hat e_z # the axis unity vectors.
We have
#<< vec v, hat e_x>> = norm(vec v)cos(theta_x) = v_x#
#<< vec v, hat e_y>> = norm(vec v)cos(theta_y) = v_y#
#<< vec v, hat e_z>> = norm(vec v)cos(theta_z) = v_z#
also
#v_x^2+v_y^2+v_z^2=norm(vec v)^2 = norm(vec v)^2cos^2(theta_x)+norm(vec v)^2cos^2(theta_y)+norm(vec v)^2cos^2(theta_z) #
simplifying we have
#cos^2(theta_x)+cos^2(theta_y)+cos^2(theta_z) = 1#
so
#cos(theta_z) = pm sqrt(1-cos^2(theta_x)-cos^2(theta_y))#
having now #theta_x = 150^@# and #theta_y = 60^@#
we have #cos(theta_z)=0# so #theta_z = pm pi/2 = pm 90^@#