Question #e09ab

1 Answer
Jun 22, 2017

12secxtanxcscx+32ln|secx+tanx|+C

Explanation:

I=csc2xsec3xdx

Use csc2x=1+cot2x:

I=(1+cot2x)sec3xdx=sec3xdx+csc2xsecxdx

Again use csc2x=cot2x+1:

I=sec3xdx+(cot2x+1)secxdx

I=sec3xdx+secxdx+cotxcscxdx

The two rightmost integrals are standard:

I=sec3xdx+ln|secx+tanx|cscx

Let J=sec3xdx. To solve this, begin with integration by parts, letting:

u=secx du=secxtanxdx
dv=sec2xdx v=tanx

Then:

J=secxtanxsecxtan2xdx

Using tan2x=sec2x1:

J=secxtanxsecx(sec2x1)dx

J=secxtanxsec3xdx+secxdx

The integral of secx is common. We can add J to both sides since its reappeared on the right-hand side:

2J=secxtanx+ln|secx+tanx|

J=12secxtanx+12ln|secx+tanx|

Then the original integral equals:

I=(12secxtanx+12ln|secx+tanx|)+ln|secx+tanx|cscx

I=12secxtanxcscx+32ln|secx+tanx|+C