Question #c0643

1 Answer
Aug 13, 2016

See below

Explanation:

The theorem (from Wiki):

\oint _{\gamma }f(z)\,dz=0γf(z),dz=0

The contour integral around the closed path should be zero.

I am going to use vector notation for the linear bits as its clearer and the algebra is the same

vec{AB} = ((2),(2))

So the param is z = ((1),(1)) + t((1),(1)), t in [0,2]

dz = ((1),(1)) dt

implies int_(t = 0)^2 ( ((1),(1)) + t((1),(1)) + ((-1),(1))) ((1),(1)) dt

= ((1),(1)) int_(0)^2 ((0),(2)) + t((1),(1)) dt

= ((1),(1)) [ ((0),(2))t + t^2/2((1),(1)) ]_(0)^2

= ((1),(1)) [ ((0),(4)) + ((2),(2)) ]

= ((1),(1)) ((2),(6))

= (1+i) ( 2+6i)

= 2 + 6i + 2i - 6

= -4 + 8i

vec{BC} = ((-4),(0))

z = ((3),(3)) + t((-1),(0)), t in [0,4]

dz = ((-1),(0)) dt

implies int_(0)^4 ( ((3),(3)) + t((-1),(0)) + ((-1),(1))) ((-1),(0)) dt

= ((-1),(0)) int_0^4 ((2),(4)) + t((-1),(0)) dt

= ((-1),(0)) [ ((2),(4))t + t^2/2((-1),(0)) ]_0^4

= ((-1),(0)) ( ((8),(16)) + 8((-1),(0)) )

= ((-1),(0)) ((0),(16))

=-1 * 16i

= -16i

vec{CA} = ((2),(-2))

z = ((-1),(3)) + t((1),(-1)), t in [0,2]

dz = ((1),(-1)) dt

implies int_0^2 ( ((-1),(3)) + t((1),(-1)) + ((-1),(1))) ((1),(-1)) dt

=((1),(-1))int_0^2 ((-2),(4)) + t((1),(-1)) dt

= ((1),(-1)) [ ((-2),(4))t + t^2/2((1),(-1)) ]_0^2

= ((1),(-1)) ( ((-4),(8)) + ((2),(-2)) )

= ((1),(-1)) ((-2),(6))

= (1-i)(-2 + 6i)

= -2 + 6i + 2i + 6

= 4 + 8i

implies int_(AB) + int_ (BC) + int_(CA)

((-4),(8)) + ((0),(-16)) + ((4),(8)) = ((0),(0))

= 0