lim_(trarr1){t-1}/(t^3-1)= ?

2 Answers
Jul 21, 2016

1/3

Explanation:

Making x=z^3

lim_(xrarr1) (root3x-1)/(x-1) equiv lim_{z->1}(z-1)/(z^3-1)

but

(z-1)/(z^3-1)=1/(z^2+z+1)

so

lim_(xrarr1) (root3x-1)/(x-1) =1/3

Jul 21, 2016

1/3.

Explanation:

In fact, it is a Standard Form of Limit that

lim_(xrarra)(x^n-a^n)/(x-a)=n*a^(n-1), where, n in RR.

In our example, a=1, n=1/3.

The Reqd. Limit=1/3*(1)^(1/3-1)=1/3.

Aliter :-

Take substn. x=t^3, so that, as xrarr1, trarr1.

:. Reqd. Limit=lim_(trarr1){root(3)(t^3)-1}/(t^3-1)

=lim_(trarr1)(t-1)/{(t-1)(t^2+t+1)}

As trarr1, t!=1, so, (t-1)!=0 can be cancelled, to get,

The Reqd. Lim.=lim_(trarr1)1/(t^2+t+1)=1/3, as before!

Enjoy Maths.!