We use, #a^3+b^3=(a+b)(a^2-ab+b^2)# to get,
#(costheta)^6+(sintheta)^6=cos^6theta+sin^6theta#
#=(cos^2theta+sin^2theta)(cos^4theta-cos^2thetasin^2theta+sin^4theta)#
#=(1){(cos^2theta+sin^2theta)^2-2sin^2thetacos^2theta-cos^2thetasin^2theta}#
#=1-3cos^2thetasin^2theta#
#=1-3/4(2sinthetacostheta)^2#
#=1-3/4(sin2theta)^2#
#=1-3/4(sin^2(2theta))#
Recall that, #1-cos2A=2sin^2A#.
Hence, the Exp.#=1-3/8{2sin^2(2theta)}#
#=1-3/8(1-cos4theta)#
#=1-3/8+3/8cos4theta#
#=5/8+3/8cos4theta#