Question #02a6f

1 Answer
Feb 6, 2017

To be contd.............

Explanation:

We use, a^3+b^3=(a+b)(a^2-ab+b^2) to get,

(costheta)^6+(sintheta)^6=cos^6theta+sin^6theta

=(cos^2theta+sin^2theta)(cos^4theta-cos^2thetasin^2theta+sin^4theta)

=(1){(cos^2theta+sin^2theta)^2-2sin^2thetacos^2theta-cos^2thetasin^2theta}

=1-3cos^2thetasin^2theta

=1-3/4(2sinthetacostheta)^2

=1-3/4(sin2theta)^2

=1-3/4(sin^2(2theta))

Recall that, 1-cos2A=2sin^2A.

Hence, the Exp.=1-3/8{2sin^2(2theta)}

=1-3/8(1-cos4theta)

=1-3/8+3/8cos4theta

=5/8+3/8cos4theta