Question #61aa2

1 Answer
Nov 18, 2016

inttan^3xsec^2xdx=1/4tan^4x+Ctan3xsec2xdx=14tan4x+C

Explanation:

inttan^3xsec^2xdxtan3xsec2xdx

the key here is to remember that

d/(dx)(tan^nx)=ntan^(n-1)xsec^2xddx(tannx)=ntann1xsec2x

**see below**

so comparing this with the required integral

try d/(dx)(tan^4x)ddx(tan4x)

=4tan^3xsec^2x=4tan3xsec2x

inttan^3xsec^2xdx=1/4tan^4x+Ctan3xsec2xdx=14tan4x+C


proof

d/(dx)(tan^nx)=ntan^(n-1)xsec^2xddx(tannx)=ntann1xsec2x

y=tan^nxy=tannx

u=tanx=>(du)/(dx)=sec^2xu=tanxdudx=sec2x

y=u^n=>(dy)/(du)=n(u^(n-1))y=undydu=n(un1)

by the chain rule

(dy)/(dx)=(dy)/(du)xx(du)/(dx)dydx=dydu×dudx

(dy)/(dx)=n(u^(n-1))xxsec^2xdydx=n(un1)×sec2x

(dy)/(dx)=ntan^(n-1)x xxsec^2xdydx=ntann1x×sec2x

=ntan^(n-1)xsec^2x=ntann1xsec2x