Question #674da
1 Answer
Nov 25, 2016
Explanation:
=d/dx[(e^t)_0^(2x)+(t^2)_0^(2x)]=ddx[(et)2x0+(t2)2x0]
=d/dx(e^(2x)-e^0+(2x)^2-0^2)=ddx(e2x−e0+(2x)2−02)
=d/dx(e^(2x)+4x^2-1)=ddx(e2x+4x2−1)
=2e^(2x)+8x=2e2x+8x
Note that we could have avoided calculating the integral and derivatives by letting
=2F'(2x)-0
=2[e^(2x)+2(2x)]
=2e^(2x)+8x