Question #4395c

1 Answer
Aug 20, 2016

#(hcos(alpha-beta)sinalpha)/sinbeta#

Explanation:

enter image source here
Given

  • #H->"Height of Tower"=CD#

  • #h->"Height of Pole"=AB#

  • #/_CBD->"Angle of elevation top of Tower from B "=alpha#

  • #/_ACB->"Angle subtended by the pole at C "=beta#

  • #/_CAE =(alpha-beta)#

  • #"Let "AE=BD=b#

#"Now for "DeltaCBD ,(CD)/(BD)=H/b=tanalpha......(1)#

#"And for "DeltaCAE ,(CE)/(AE)=(H-h)/b=tan(alpha-beta)......(2)#

Dividing (2) by (1) we get

#(H-h)/H=tan(alpha-beta)/tanalpha#

#=>1-h/H=(sin(alpha-beta)cosalpha)/(cos(alpha-beta)sinalpha)#

#=>h/H=1-(sin(alpha-beta)cosalpha)/(cos(alpha-beta)sinalpha)#

#=>h/H=(cos(alpha-beta)sinalpha-sin(alpha-beta)cosalpha)/(cos(alpha-beta)sinalpha)#

#=>h/H=sin(alpha-alpha+beta)/(cos(alpha-beta)sinalpha)#

#=>h/H=sinbeta/(cos(alpha-beta)sinalpha)#

#=>H/h=(cos(alpha-beta)sinalpha)/sinbeta#

#=>H=(hcos(alpha-beta)sinalpha)/sinbeta#