#sum_(k=0)^ook^2 6^(-k) =# ?

2 Answers
Aug 27, 2016

#sum_(n=1)^oo n^2/6^n=42/125#

Explanation:

Taking this step by step, let us start with:

#5/6 sum_(n=1)^oo 1/6^n=sum_(n=1)^oo 1/6^n - 1/6 sum_(n=1)^oo 1/6^n#

#=1/6 + sum_(n=2)^oo 1/6^n - sum_(n=1)^oo 1/6^(n+1)#

#=1/6 + color(red)(cancel(color(black)(sum_(n=1)^oo 1/6^(n+1)))) - color(red)(cancel(color(black)(sum_(n=1)^oo 1/6^(n+1))))#

#=1/6#

Multiplying both ends by #6/5# we find:

#sum_(n=1)^oo 1/6^n = 1/5#

Building on this, we find:

#5/6 sum_(n=1)^oo n/6^n = sum_(n=1)^oo n/6^n - 1/6 sum_(n=1)^oo n/6^n#

#=sum_(n=1)^oo n/6^n - sum_(n=1)^oo n/6^(n+1)#

#=1/6 + sum_(n=2)^oo n/6^n - sum_(n=1)^oo n/6^(n+1)#

#=1/6 + sum_(n=1)^oo (n+1)/6^(n+1) - sum_(n=1)^oo n/6^(n+1)#

#=1/6 + sum_(n=1)^oo ((n+1) - n)/6^(n+1)#

#=1/6 + sum_(n=1)^oo 1/6^(n+1)#

#=1/6 + 1/6 sum_(n=1)^oo 1/6^n#

#=1/6 + 1/6(1/5)#

#=1/5#

Multiplying both ends by #6/5# we find:

#sum_(n=1)^oo n/6^n = 6/25#

Similarly, we find:

#5/6 sum_(n=1)^oo n^2/6^n=sum_(n=1)^oo n^2/6^n - 1/6 sum_(n=1)^oo n^2/6^n#

#=sum_(n=1)^oo n^2/6^n - sum_(n=1)^oo n^2/6^(n+1)#

#=1/6+sum_(n=2)^oo n^2/6^n - sum_(n=1)^oo n^2/6^(n+1)#

#=1/6+sum_(n=1)^oo (n+1)^2/6^(n+1) - sum_(n=1)^oo n^2/6^(n+1)#

#=1/6+sum_(n=1)^oo ((n+1)^2-n^2)/6^(n+1)#

#=1/6+sum_(n=1)^oo (2n+1)/6^(n+1)#

#=1/6+1/6 sum_(n=1)^oo (2n+1)/6^n#

#=1/6+1/3 sum_(n=1)^oo n/6^n+1/6 sum_(n=1)^oo 1/6^n#

#=1/6+1/3 (6/25)+1/6 (1/5)#

#=7/25#

Multiply both ends by #6/5# to get:

#sum_(n=1)^oo n^2/6^n = 42/125#

Aug 28, 2016

#sum_(k=0)^ook^2 6^(-k) =42/125#

Explanation:

#sum_(k=0)^ook^2x^(-k) = -x d/(dx)(sum_(k=0)^ook x^(-k)) #

and

#sum_(k=0)^ookx^(-k) = -x d/(dx)(sum_(k=0)^oo x^(-k))#

if #abs(1/x) < 1# then

#sum_(k=0)^oo x^(-k) = 1/(1-1/x) = x/(x-1)#

Applying the transformations we have

#sum_(k=0)^ook^2x^(-k) = (x (x+1))/(x-1)^3#

Now, if #x=6# we have

#sum_(k=0)^ook^2 6^(-k) =42/125#