#sum_(k=0)^ook^2 6^(-k) =# ?
2 Answers
Explanation:
Taking this step by step, let us start with:
#5/6 sum_(n=1)^oo 1/6^n=sum_(n=1)^oo 1/6^n - 1/6 sum_(n=1)^oo 1/6^n#
#=1/6 + sum_(n=2)^oo 1/6^n - sum_(n=1)^oo 1/6^(n+1)#
#=1/6 + color(red)(cancel(color(black)(sum_(n=1)^oo 1/6^(n+1)))) - color(red)(cancel(color(black)(sum_(n=1)^oo 1/6^(n+1))))#
#=1/6#
Multiplying both ends by
#sum_(n=1)^oo 1/6^n = 1/5#
Building on this, we find:
#5/6 sum_(n=1)^oo n/6^n = sum_(n=1)^oo n/6^n - 1/6 sum_(n=1)^oo n/6^n#
#=sum_(n=1)^oo n/6^n - sum_(n=1)^oo n/6^(n+1)#
#=1/6 + sum_(n=2)^oo n/6^n - sum_(n=1)^oo n/6^(n+1)#
#=1/6 + sum_(n=1)^oo (n+1)/6^(n+1) - sum_(n=1)^oo n/6^(n+1)#
#=1/6 + sum_(n=1)^oo ((n+1) - n)/6^(n+1)#
#=1/6 + sum_(n=1)^oo 1/6^(n+1)#
#=1/6 + 1/6 sum_(n=1)^oo 1/6^n#
#=1/6 + 1/6(1/5)#
#=1/5#
Multiplying both ends by
#sum_(n=1)^oo n/6^n = 6/25#
Similarly, we find:
#5/6 sum_(n=1)^oo n^2/6^n=sum_(n=1)^oo n^2/6^n - 1/6 sum_(n=1)^oo n^2/6^n#
#=sum_(n=1)^oo n^2/6^n - sum_(n=1)^oo n^2/6^(n+1)#
#=1/6+sum_(n=2)^oo n^2/6^n - sum_(n=1)^oo n^2/6^(n+1)#
#=1/6+sum_(n=1)^oo (n+1)^2/6^(n+1) - sum_(n=1)^oo n^2/6^(n+1)#
#=1/6+sum_(n=1)^oo ((n+1)^2-n^2)/6^(n+1)#
#=1/6+sum_(n=1)^oo (2n+1)/6^(n+1)#
#=1/6+1/6 sum_(n=1)^oo (2n+1)/6^n#
#=1/6+1/3 sum_(n=1)^oo n/6^n+1/6 sum_(n=1)^oo 1/6^n#
#=1/6+1/3 (6/25)+1/6 (1/5)#
#=7/25#
Multiply both ends by
#sum_(n=1)^oo n^2/6^n = 42/125#
Explanation:
and
if
Applying the transformations we have
Now, if