Question #f1eef
1 Answer
Here's what I got.
Explanation:
For part (A), calcium carbonate,
Because carbonic acid is highly unstable, it will decompose to produce water and release carbon dioxide,
"CaCO"_ (3(s)) + 2"HCl"_ ((aq)) -> "CaCl"_ (2(aq)) + "H"_ 2"O"_ ((l)) + "CO"_ (2(g)) uarrCaCO3(s)+2HCl(aq)→CaCl2(aq)+H2O(l)+CO2(g)↑⏐
Hydrochloric acid is a strong acid, which means that it dissociates completely in aqueous solution to release hydrogen cations,
"CaCO"_ (3(s)) + 2 xx ["H"_ ((aq))^(+) + "Cl"_ ((aq))^(-)] -> "Ca"_ ((aq))^(2+) + 2"Cl"_ ((aq))^(-) + "H"_ 2"O"_ ((l)) + "CO"_ (2(g)) uarrCaCO3(s)+2×[H+(aq)+Cl−(aq)]→Ca2+(aq)+2Cl−(aq)+H2O(l)+CO2(g)↑⏐ ⏐⏐
The complete ionic equation will look like this
"CaCO"_ (3(s)) + 2"H"_ ((aq))^(+) + 2"Cl"_ ((aq))^(-) -> "Ca"_ ((aq))^(2+) + 2"Cl"_ ((aq))^(-) + "H"_ 2"O"_ ((l)) + "CO"_ (2(g)) uarrCaCO3(s)+2H+(aq)+2Cl−(aq)→Ca2+(aq)+2Cl−(aq)+H2O(l)+CO2(g)↑⏐⏐
To get the net ionic equation, simply remove the spectator ions from both sides of the equation
"CaCO"_ (3(s)) + 2"H"_ ((aq))^(+) + color(red)(cancel(color(black)(2"Cl"_ ((aq))^(-)))) -> "Ca"_ ((aq))^(2+) + color(red)(cancel(color(black)(2"Cl"_ ((aq))^(-)))) + "H"_ 2"O"_ ((l)) + "CO"_ (2(g)) uarr
This will get you
color(green)(|bar(ul(color(white)(a/a)color(black)("CaCO"_ (3(s)) + 2"H"_ ((aq))^(+) -> "Ca"_ ((aq))^(2+) + "H"_ 2"O"_ ((l)) + "CO"_ (2(g)) uarr)color(white)(a/a)|)))
In part (B), you're dealing with ammonium sulfate,
Sodium hydroxide,
When these two solutions are mixed, a neutralization reaction will take place. This reaction will produce aqueous sodium sulfate,
("NH"_ 4)_ 2"SO"_ (4(aq)) + 2"NaOH"_ ((aq)) -> "Na"_ 2"SO"_ (4(aq)) + 2"NH"_ (3(aq)) + 2"H"_ 2"O"_ ((l))
The complete ionic equation is
2"NH"_ (4(aq))^(+) + "SO"_ (4(aq))^(2-) + 2"Na"_ ((aq))^(+) + 2"OH"_ ((aq))^(-) -> 2"Na"_ ((aq))^(+) + "SO"_ (4(aq))^(2-) + 2"NH"_ (3(aq)) + 2"H"_ 2"O"_ ((l))
Once again, eliminate the spectator ions
2"NH"_ (4(aq))^(+) + color(red)(cancel(color(black)("SO"_ (4(aq))^(2-)))) + color(red)(cancel(color(black)(2"Na"_ ((aq))^(+)))) + 2"OH"_ ((aq))^(-) -> color(red)(cancel(color(black)(2"Na"_ ((aq))^(+)))) + color(red)(cancel(color(black)("SO"_ (4(aq))^(2-)))) + 2"NH"_ (3(aq)) + 2"H"_ 2"O"_ ((l))
to get the net ionic eqution
color(green)(|bar(ul(color(white)(a/a)color(black)("NH"_ (4(aq))^(+) + "OH"_ ((aq))^(-) -> "NH"_ (3(aq)) + "H"_ 2"O"_ ((l)))color(white)(a/a)|)))