Question #26742

1 Answer
Aug 30, 2016

#=(1+x tanx)/cos x#

Explanation:

#((x+y) sec(x+y)-xsecx)/y=#
# ((x+y)cosx-x cos(x+y))/(y cosx cos(x+y))=#
#((x+y)cos x-x(cos x cosy-sin x sin y))/(y cosx cos(x+y))=#
#(xcos x(1-cosy)+y cosx + x sinx sin y)/(y cosx cos(x+y))=#
#=x/cos(x+y)((1-cosy)/y)+1/cos(x+y)+(x sinx)/(cos x cos(x+y)) siny/y#

but

#lim_(y->0)(1-cosy)/y=0# and
#lim_(y->0)(siny)/y=1#

so

#lim_(y->0)((x+y) sec(x+y)-xsecx)/y=(1+x tanx)/cos x#